Structure Reports

Online
ISSN 1600-5368

Anwar Usman, ${ }^{\text {a }}$ Hoong-Kun Fun, ${ }^{\text {a* }}$ Lei Wang, ${ }^{\text {b }}$ Yan Zhang ${ }^{\text {b }}$ and Jian-Hua Xu ${ }^{\text {b }}$

[^0]Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=213 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.078$
$w R$ factor $=0.199$
Data-to-parameter ratio $=15.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

$2 a^{\prime}, 8 a^{\prime}$-Dichloro-3,8-dioxo- $\mathbf{1}^{\prime}, \mathbf{2}^{\prime}, 2 \mathrm{a}^{\prime}, 8 \mathrm{a}^{\prime}$-tetra-hydrodispiro[cyclopropane-1,1'-cyclobuta[b]-naphthalene- $2^{\prime}, \mathbf{1}^{\prime \prime}$-cyclopropane]

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2}$, the tetrahydrobenzene ring adopts a boat conformation, and both cyclopropyl groups are orthogonal to the cyclobutane ring. The cyclobutane and tetrahydrobenzene rings share one $\mathrm{C}-\mathrm{C}$ bond, and are folded about this bond relative to each other.

Comment

Photo-induced electron transfer (PET) reactions of the electron donor bicyclopropylidene and its derivatives have not been widely investigated. With our continuing studies into the PET reactions of electron-rich compounds, we have carried out PET reactions of bicyclopropylidene with several quinones (Wang \& $\mathrm{Xu}, 2002$). In this study, we have isolated the title compound, (I), and undertaken its X-ray crystal structure analysis in order to elucidate its configuration and conformation.

The bond lengths and angles in (I) (Fig. 1) are within normal ranges (Allen et al., 1987). Those within the dioxotetrahydrocyclobuta $[b]$ naphthalene moiety $(\mathrm{O} 1 / \mathrm{O} 2 / \mathrm{C} 1-$ C 12) agree with the corresponding values in a related structure (Taira et al., 1993), except for the $\mathrm{C} 1-\mathrm{C} 10$ bond length [1.587 (3) A], which is slightly longer than the corresponding value in the related structure, mainly due to the repulsions of the lone pair of electrons of the two attached chlorine substituents.

In (I), the benzo group is not coplanar with the tetrahydrobenzene ring, which is distorted slightly towards a boat conformation. Atoms C2 and C9 are displaced from the $\mathrm{C} 1 /$ C3/C8/C10 plane by 0.339 (2) and 0.202 (2) \AA, respectively, and the dihedral angle between the tetrahydrobenzene and benzene rings is $9.5(1)^{\circ}$.

The cyclobutane moiety ($\mathrm{C} 1 / \mathrm{C} 10-\mathrm{C} 12$) is slightly out of planarity, with the atoms deviating from its mean plane by ± 0.042 (3); the dihedral angle of the $\mathrm{C} 1 / \mathrm{C} 10 / \mathrm{C} 12$ and C 10 / $\mathrm{C} 11 / \mathrm{C} 12$ planes is $171.2(2)^{\circ}$. The cyclobutane mean plane makes a dihedral angle of 78.7 (1) ${ }^{\circ}$ with the tetrahydrobenzene ring, as a result of the $s p^{3}$ hybidization of the atoms C 1 and C10.

The configurations of the two cyclopropyl rings $(\mathrm{C} 11 / \mathrm{C} 13 /$ C 14 and $\mathrm{C} 12 / \mathrm{C} 15 / \mathrm{C} 16$) with respect to the cyclobutane are determined by the $\mathrm{C} 13-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 15$ and $\mathrm{C} 14-\mathrm{C} 11-$

Received 20 November 2002 Accepted 25 November 2002 Online 30 November 2002

Figure 1
The structure of (I), showing 50\% probability displacement ellipsoids and the atom-numbering scheme.
$\mathrm{C} 12-\mathrm{C} 16$ torsion angles [both are $9.2(2)^{\circ}$], implying that atoms C 11 and C 12 are eclipsed. The $\mathrm{Cl} 1-\mathrm{C} 1-\mathrm{C} 10-\mathrm{Cl} 2$ torsion angle is 9.1 (2) ${ }^{\circ}$, also indicating an eclipsed configuration around atoms C 1 and C 10 . The two cyclopropane rings are orthogonal to the cyclobutane ring, with dihedral angles of 89.4 (2) and $89.5(2)^{\circ}$. In the crystal, molecules are linked into extended chains by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, via unit-cell translations in the a direction (see Fig. 2 and Table 2).

Experimental

The title compound was prepared by the photo-induced reaction of 2,3-dichloronaphtho-1,4-quinone with an excess of bicyclopropylidene in benzene solution, and was isolated by column chromatography on silica gel. Single crystals suitable for X-ray diffraction study were obtained from slow evaporation of a petroleum etherethyl acetate $(15: 1 \mathrm{v} / \mathrm{v})$ solution.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2}$
$M_{r}=307.16$
Triclinic, $P \overline{1}$
$a=7.2430$ (1) A
$b=10.0455(2) \AA$
$c=10.0831$ (2) \AA
$\alpha=85.4658(8)^{\circ}$
$\beta=73.306$ (1) ${ }^{\circ}$
$\gamma=69.401(1)^{\circ}$
$V=657.59(2) \AA^{3}$

Data collection

Siemens SMART CCD areadetector
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.792, T_{\max }=0.828$
3750 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.078$
$w R\left(F^{2}\right)=0.199$
$S=1.07$
2753 reflections
182 parameters
H -atom parameters constrained

Figure 2
Packing diagram of compound (I), showing extended chains in the a direction. Dashed lines denote $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interactions.

Table 1
Selected geometric parameters (\AA).

$\mathrm{C} 1-\mathrm{C} 12$	$1.543(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.505(3)$
$\mathrm{C} 10-\mathrm{C} 11$	$1.542(3)$		

Table 2
Hydrogen-bonding geometry ($\left({ }^{\AA},{ }^{\circ}\right.$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 15-\mathrm{H} 15 B \cdots \mathrm{O}^{\mathrm{i}}$	0.97	2.42	$3.384(4)$	172
Symmetry code: (i) $1+x, y, z$.				

Symmetry code: (i) $1+x, y, z$.
The H atoms were fixed geometrically and treated as riding on the parent C atoms, with C $-\mathrm{H}=0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The maximum and minimum electron-density peaks are $0.06 \AA$ from Cl 1 and $0.92 \AA$ from Cl 2 , respectively.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

The authors thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 305/ PFIZIK/610961. AU thanks Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (1990). Acta Cryst. A46, C-34.
Taira, Z., Kido, M., Tanaka, M. \& Asahi, Y. (1993). Chem. Pharm. Bull. 41 2183-2188.
Wang, L. \& Xu, J.-H. (2002). In preparation.

[^0]: ${ }^{\text {a }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\mathbf{b}}$ Department of Chemistry,
 Nanjing University, Nanjing 210093, People's Republic of China

